

Comparative Genomics

Introduction to DNA atlases (DNA structures)

Center for Biological Sequence Analysis

Department of Systems Biology

Dave Ussery

Genomics of Prokaryotes Workshop Universidad Miguel Hernández Alicante, Spain

THE OXFORD ENGLISH DICTIONARY

bioinformatics, n.

The science of information and information flow in biological systems, esp. the use of computational methods in genetics and genomics.

1978 P. HOGEWEG in *Simulation* **31** 90/1 Since 1970 she has been a staff member at the Subfaculty of Biology of the University of Utrecht, with her main field of research in bioinformatics. **1985** *Jrnl. Theoret. Biol.* **113** 719 (*heading*) Tumor escape from immune elimination... R. J. De Beer, Bioinformatics Group, University of Utrecht. **1986** *Philos. Trans. Royal Soc.* A. **317** 324 The area of modelling mutants from a known structure has been revolutionized by the latest tools of molecular graphics... This is a key element in the whole technology and has attracted much interest (for example, the recent E.E.C. 'Bioinformatics' programme). **1987** *Science* 4 Sept. 1108/3 One of the latest developments [at the European Molecular Biology Laboratory] has been the creation of a new research program in bioinformatics. **1996** *Fast Company* Aug.-Sept. 32/3 A lot of breakthroughs in medicine will come out of the efforts of bio-informatics, in which computers are used to decipher genes and proteins.

The Central Dogma of Molecular Biology

What is Biological Information?

gagttttatc	gcttccatga	cgcagaagtt	aacactttcg	gatatttctg	atgagtcgaa	aaattatctt	gataaagcag	gaattactac	tgcttgttta	cgaattaaat	cgaagtggac
tgctggcgga	aaatgagaaa	attcgaccta	tccttgcgca	gctcgagaag	ctcttacttt	gcgacctttc	gccatcaact	aacgattctg	tcaaaaactg	acgcgttgga	tgaggagaag
tggcttaata	tgcttggcac	gttcgtcaag	gactggttta	gatatgagtc	acattttgtt	catggtagag	attctcttgt	tgacatttta	aaagagcgtg	gattactatc	tgagtccgat
gctgttcaac	cactaatagg	taagaaatca	tgagtcaagt	tactgaacaa	tccgtacgtt	tccagaccgc	tttggcctct	attaagctca	ttcaggcttc	tgccgttttg	gatttaaccg
aagatgattt	cgattttctg	acgagtaaca	aagtttggat	tgctactgac	cgctctcgtg	ctcgtcgctg	cgttgaggct	tgcgtttatg	gtacgctgga	ctttgtggga	taccctcgct
ttcctgctcc	tgttgagttt	attgctgccg	tcattgctta	ttatgttcat	cccgtcaaca	ttcaaacggc	ctgtctcatc	atggaaggcg	ctgaatttac	ggaaaacatt	attaatggcg
tcgagcgtcc	ggttaaagcc	gctgaattgt	tcgcgtttac	cttgcgtgta	cgcgcaggaa	acactgacgt	tcttactgac	gcagaagaaa	acgtgcgtca	aaaattacgt	gcggaaggag
tgatgtaatg	tctaaaggta	aaaaacgttc	tggcgctcgc	cctggtcgtc	cgcagccgtt	gcgaggtact	aaaggcaagc	gtaaaggcgc	tcgtctttgg	tatgtaggtg	gtcaacaatt
ttaattgcag	gggcttcggc	cccttacttg	aggataaatt	atgtctaata	ttcaaactgg	cgccgagcgt	atgccgcatg	acctttccca	tcttggcttc	cttgctggtc	agattggtcg
tcttattacc	atttcaacta	ctccggttat	cgctggcgac	tccttcgaga	tggacgccgt	tggcgctctc	cgtctttctc	cattgcgtcg	tggccttgct	attgactcta	ctgtagacat
ttttactttt	tatgtccctc	atcgtcacgt	ttatggtgaa	cagtggatta	agttcatgaa	ggatggtgtt	aatgccactc	ctctcccgac	tgttaacact	actggttata	ttgaccatgc
cgcttttctt	ggcacgatta	accctgatac	caataaaatc	cctaagcatt	tgtttcaggg	ttatttgaat	atctataaca	actatttaa	agcgccgtgg	atgcctgacc	gtaccgaggc
taaccctaat	gagcttaatc	aagatgatgc	tcgttatggt	ttccgttgct	gccatctcaa	aaacatttgg	actgctccgc	ttcctcctga	gactgagctt	tctcgccaaa	tgacgacttc
taccacatct	attgacatta	tgggtctgca	agctgcttat	gctaatttgc	atactgacca	agaacgtgat	tacttcatgc	agcgttacca	tgatgttatt	tcttcatttg	gaggtaaaac
ctcttatgac	gctgacaacc	gtcctttact	tgtcatgcgc	tctaatctct	gggcatctgg	ctatgatgtt	gatggaactg	accaaacgtc	gttaggccag	ttttctggtc	gtgttcaaca
gacctataaa	cattctgtgc	cgcgtttctt	tgttcctgag	catggcacta	tgtttactct	tgcgcttgtt	cgttttccgc	ctactgcgac	taaagagatt	cagtacctta	acgctaaagg
tgctttgact	tataccgata	ttgctggcga	ccctgttttg	tatggcaact	tgccgccgcg	tgaaatttct	atgaaggatg	ttttccgttc	tggtgattcg	tctaagaagt	ttaagattgc
tgagggtcag	tggtatcgtt	atgcgccttc	gtatgtttct	cctgcttatc	accttcttga	aggcttccca	ttcattcagg	aaccgccttc	tggtgatttg	caagaacgcg	tacttattcg
ccaccatgat	tatgaccagt	gtttccagtc	cgttcagttg	ttgcagtgga	atagtcaggt	taaatttaat	gtgaccgttt	atcgcaatct	gccgaccact	cgcgattcaa	tcatgacttc
gtgataaaag	attgagtgtg	aggttataac	gccgaagcgg	taaaaatttt	aatttttgcc	gctgaggggt	tgaccaagcg	aagcgcggta	ggttttctgc	ttaggagttt	aatcatgttt
cagactttta	tttctcgcca	taattcaaac	tttttttctg	ataagctggt	tctcacttct	gttactccag	cttcttcggc	acctgtttta	cagacaccta	aagctacatc	gtcaacgtta
tattttgata	gtttgacggt	taatgctggt	aatggtggtt	ttcttcattg	cattcagatg	gatacatctg	tcaacgccgc	taatcaggtt	gtttctgttg	gtgctgatat	tgcttttgat
gccgacccta	aatttttgc	ctgtttggtt	cgctttgagt	cttcttcggt	tccgactacc	ctcccgactg	cctatgatgt	ttatcctttg	aatggtcgcc	atgatggtgg	ttattatacc
gtcaaggact	gtgtgactat	tgacgtcctt	ccccgtacgc	cgggcaataa	cgtttatgtt	ggtttcatgg	tttggtctaa	ctttaccgct	actaaatgcc	gcggattggt	ttcgctgaat
aagagattat	ttgtctccag	ccacttaagt	gaggtgattt	atgtttggtg	ctattgctgg	cggtattgct	tctgctcttg	ctggtggcgc	catgtctaaa	ttgtttggag	gcggtcaaaa
agccgcctcc	ggtggcattc	aaggtgatgt	gcttgctacc	gataacaata	ctgtaggcat	gggtgatgct	ggtattaaat	ctgccattca	aggctctaat	gttcctaacc	ctgatgaggc
cgcccctagt	tttgtttctg	gtgctatggc	taaagctggt	aaaggacttc	ttgaaggtac	gttgcaggct	ggcacttctg	ccgtttctga	taagttgctt	gatttggttg	gacttggtgg
caagtctgcc	gctgataaag	gaaaggatac	tcgtgattat	cttgctgctg	catttcctga	gcttaatgct	tgggagcgtg	ctggtgctga	tgcttcctct	gctggtatgg	ttgacgccgg
atttgagaat	caaaaagagc	ttactaaaat	gcaactggac	aatcagaaag	agattgccga	gatgcaaaat	gagactcaaa	aagagattgc	tggcattcag	tcggcgactt	cacgccagaa
tacgaaagac	caggtatatg	cacaaaatga	gatgcttgct	tatcaacaga	aggagtctac	tgctcgcgtt	gcgtctatta	tggaaaacac	caatctttcc	aagcaacagc	aggtttccga
gattatgcgc	caaatgctta	ctcaagctca	aacggctggt	cagtattta	ccaatgacca	aatcaaagaa	atgactcgca	aggttagtgc	tgaggttgac	ttagttcatc	agcaaacgca
gaatcagcgg	tatggctctt	ctcatattgg	cgctactgca	aaggatattt	ctaatgtcgt	cactgatgct	gcttctggtg	tggttgatat	ttttcatggt	attgataaag	ctgttgccga
tacttggaac	aatttctgga	aagacggtaa	agctgatggt	attggctcta	atttgtctag	gaaataaccg	tcaggattga	caccctccca	attgtatgtt	ttcatgcctc	caaatcttgg
aggctttttt	atggttcgtt	cttattaccc	ttctgaatgt	cacgctgatt	attttgactt	tgagcgtatc	gaggctctta	aacctgctat	tgaggcttgt	ggcatttcta	ctctttctca
atccccaatg	cttggcttcc	ataagcagat	ggataaccgc	atcaagctct	tggaagagat	tctgtctttt	cgtatgcagg	gcgttgagtt	cgataatggt	gatatgtatg	ttgacggcca
taaggctgct	tctgacgttc	gtgatgagtt	tgtatctgtt	actgagaagt	taatggatga	attggcacaa	tgctacaatg	tgctcccca	acttgatatt	aataacacta	tagaccaccg
ccccgaaggg	gacgaaaaat	ggtttttaga	gaacgagaag	acggttacgc	agttttgccg	caagctggct	gctgaacgcc	ctcttaagga	tattcgcgat	gagtataatt	ассссааааа
gaaaggtatt	aaggatgagt	gttcaagatt	gctggaggcc	tccactatga	aatcgcgtag	aggctttgct	attcagcgtt	tgatgaatgc	aatgcgacag	gctcatgctg	atggttggtt
tatcgttttt	gacactctca	cgttggctga	cgaccgatta	gaggcgtttt	atgataatcc	caatgctttg	cgtgactatt	ttcgtgatat	tggtcgtatg	gttcttgctg	ccgagggtcg
caaggctaat	gattcacacg	ccgactgcta	tcagtatttt	tgtgtgcctg	agtatggtac	agctaatggc	cgtcttcatt	tccatgcggt	gcactttatg	cggacacttc	ctacaggtag
cgttgaccct	aattttggtc	gtcgggtacg	caatcgccgc	cagttaaata	gcttgcaaaa	tacgtggcct	tatggttaca	gtatgcccat	cgcagttcgc	tacacgcagg	acgctttttc
acgttctggt	tggttgtggc	ctgttgatgc	taaaggtgag	ccgcttaaag	ctaccagtta	tatggctgtt	ggtttctatg	tggctaaata	cgttaacaaa	aagtcagata	tggaccttgc
tgctaaaggt	ctaggagcta	aagaatggaa	caactcacta	aaaaccaagc	tgtcgctact	tcccaagaag	ctgttcagaa	tcagaatgag	ccgcaacttc	gggatgaaaa	tgctcacaat
gacaaatctg	tccacggagt	gcttaatcca	acttaccaag	ctgggttacg	acgcgacgcc	gttcaaccag	atattgaagc	agaacgcaaa	aagagagatg	agattgaggc	tgggaaaagt
tactgtagcc	gacgttttgg	cggcgcaacc	tgtgacgaca	aatctgctca	aatttatgcg	cgcttcgata	aaaatgattg	gcgtatccaa	cctgca		

dev avg 0.39

dev avg 0.47

dev avg 0.53

dev avg 0.39

dev avg

0.18

dev avg 0.14

dev avg

0.63

CDS +

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

Genomics of Prokaryotes Workshop Universidad Miguel Hernández Alicante, Spain

12 December, 2011

13

200 bp Straight DNA

Figure 8.10 Electron micrograph of a portion of a 2% agarose gel, $1 \,\mu\text{m} \times 0.5 \,\mu\text{m}$ overall: small black rectangle is 1000 Å \times 500 Å. Individual gel fibers are about 100 Å wide. Courtesy of Sue Whytock and John Finch.

Tilt

Roll

GENOME ATLAS

Promoter Structural profile

Part 1: Regulation of Transcription

Fig. 10.5 Initiation of transcription in bacteria. In the first step, Sigma factor binds to the DNA on two locations (in the case of Sigma 70 the -35 and -10 sites). RNA polymerase (a complex of two α , one β and one β ' subunit) binds next, after which the DNA wraps around the protein. Sigma induces local strand separation so that RNA polymerase starts producing RNA (*in green*). The Sigma factor is then released and RNA polymerase proceeds along the DNA, moving with a local bubble of melted DNA (*indicated by the arrows*)

Ecoli_K12_MG1655 rrsA

20,000 bp

Monday, 12 December, 2011

Genomics of Prokaryotes Workshop Universidad Miguel Hernández Alicante, Spain

26

12 December, 2011

DTU

(B) Chromatin in form of "beads on a string"

per nucleosome

"Travers" trinucleotide scale:

Position Preference	
	dev
0.13	0.17

Satchwell,S.C., Drew,H.R., and Travers,A.A., "Sequence periodicities in chicken nucleosome core DNA", <u>J. Mol. Biol.</u>, **191**:659-675, (1986).

NOTE: we use a (slight) modification, in which the absolute value (magnitude) of the values is used to reflect trinucleotides which tend to exclude nucleosomes.

Baldi, P., Brunak, S., Chauvin, Y., and Krogh, A., "Naturally occurring nucleosome positioning signals in human exons and introns",

<u>J. Mol. Biol.</u>, **263**:503-510, (1996).

	% Out	trinuc.
High	-0.280	AAT/ATT
nign	-0.274	AAA/TTT
position	-0.246	CCA/TGG
	-0.205	AAC/GTT
pret.	-0.183	ACT/AGT
•	-0.136	CCG/CGG
	-0.110	ATC/GAT
	-0.081	AAG/CTT
	-0.077	CGC/GCG
	-0.057	AGG/CCT
	-0.037	GAA/TTC
	-0.033	ACG/CGT
	-0.032	ACC/GGT
	AC/GTC -0.013	GAC/GTC
LOW	-0.012	CCC/GGG
	-0.006	ACA/TGT
positior	-0.003	CGA/TCG
prof	0.013	GGA/TCC CAA/TTG
prei.	0.015	
	0.017	AGC/GCT
	0.025	GTA/TAC
	0.027	AGA/TCT
	0.031	CTC/GAG
	0.040	CAC/GTG
	0.068	TAA/TTA
	0.076	GCA/TGC
	0.090	CTA/TAG
High	0.107 High	GCC/GGC
nosition	0.134	ATG/CAT
posicion	0.175	CAG/CTG
pret.	0.182	ATA/TAT
-	0.194	TCA/TGA

Schizosaccharomyces pombe

All Three Chromosomes 11,896,623 bp total

Genomics of Prokaryotes Workshop Universidad Miguel Hernández Alicante, Spain

DNA Structural Atlas for Escherichia coli

Figure 7. Structural cluster analysis. Distance tree showing the relative location of 11 gene clusters based on average structural measures. The number of genes in

http://www.cbs.dtu.dk/ Center for Biological Sequence Analysis

ecoli.expressatlas.ps Thu Nov 16 16:32:38 MET 2000

Biochimie, 83:201-212, (2001).

