Single Cell Genomics

A lesson by a few single cells

Manuel Martínez García

What is `Single Cell Genomics'

Genomic technologies are applied at the level of single cells, rather than at the level of an entire cell population

Single Cell Genomics in a few data

- A growing field since 2007
- >350 papers (>25 Science/Nature/Cell/PNAS)
- Microbiology, Genomics, Cancer, Biotechnology, Stem Cells, etc...

Single Cell Genomics (SCG) Report 2013: Market Size, Segmentation, Growth, Competition and Trends

🛱 Like { 0 😏 in 8+1 More -			
UBLIN, November 13, 2013 /PRNewswire/	RESEARCHAND MARKETS	More by th	nis Source
esearch and Markets (http://www.researchandmarkets.com/research/h74k64/single_cell) has nounced the addition of the "Single Cell Genomics (SCG) Report 2013: Market Size, egmentation, Growth, Competition and Trends" report to their offering. (Logo: http://photos.prnewswire.com/prnh/20130307/600769)		RESEARCH AND MARKETS	Global and China Vitamin E Industry Report 2013 29 Nov, 2013, 14:49 GM

You can do it by yourself

Applying single cell technologies to...

doi:10.1038/nature09807

Tumour evolution inferred by single-cell sequencing

Nicholas Navin^{1,2}, Jude Kendall¹, Jennifer Troge¹, Peter Andrews¹, Linda Rodgers¹, Jeanne McIndoo¹, Kerry Cook¹, Asya Stepansky¹, Dan Levy¹, Diane Esposito¹, Lakshmi Muthuswamy³, Alex Krasnitz¹, W. Richard McCombie¹, James Hicks¹ & Michael Wigler¹

Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean

Brandon K. Swan,¹ Manuel Martinez-Garcia,¹ Christina M. Preston,² Alexander Sczyrba,³ Tanja Woyke,³ Dominique Lamy,⁴* Thomas Reinthaler,⁴ Nicole J. Poulton,¹ E. Dashiell P. Masland,¹ Monica Lluesma Gomez,¹ Michael E. Sieracki,¹ Edward F. DeLong,⁵ Gerhard J. Herndl,⁴ Ramunas Stepanauskas¹†

Science 28 January 2011: Vol. 331 no. 6016 pp. 463-467 DOI: 10.1126/science.1200387

HÏ

< Prev | Table of Contents | Next >

REPORT

Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen

Matthias Hess^{1,2,*}, Alexander Sczyrba^{1,2,*}, Rob Egan^{1,2}, Tae-Wan Kim³, Harshal Chokhawala³, Gary Schroth⁴, Shujun Luo⁴, Douglas S. Clark^{3,5}, Feng Chen^{1,2}, Tao Zhang^{1,2}, Roderick I. Mackie⁶, Len A. Pennacchio^{1,2}, Susannah G. Tringe^{1,2}, Axel Visel^{1,2}, Tanja Woyke^{1,2}, Zhong Wang^{1,2}, and Edward M. Rubin^{1,2,1}

NATURE METHODS | REVIEW

Development and applications of single-cell transcriptome analysis

Fuchou Tang, Kaiqin Lao & M Azim Surani

Affiliations | Corresponding authors

Nature Methods (2011) | doi:10.1038/nmeth.1557 Published online 30 March 2011

Microbial Ecology

Biotechnology and

many more topics

Cancer

Novel metabolic features found in the SAG data set.

C Rinke et al. Nature 2013, 1-7 (2013) doi:10.1038/nature12352

1. "Everything starts with just a single cell"

Fluorescence Activated Cell Sorting vs Microfluidics

and biotechnology applications

Sorting

Programmable microfluidic reaction array.

Leung K et al. PNAS 2012;109:7665-7670

Biotechnology

2. (So far), whole genome amplification is needed

nature

microwells

Abstract

Doing Single Cell Sequencing... we:

1) Discovered widespread planktonic Verrucomicrobia as key active polysaccharide degraders in the microbial loop (Martínez-Garcia et al., 2012, PLoS ONE)

2) Identified predominant photoheterotrophs and chemoautotrophs in freshwater bacterioplankton (*Martínez-García et al., 2012, ISME J*)

3) Unveiled the ecological interaction between protist and bacteria in natural assemblages: predation and symbiosis (*Martínez-García et al., 2012, ISME J*)

4) Assign virus to host in natural uncultured assemblages: one at a time (Martínez-García and Santos et al., under review)

Four different stories with the same root: single cell sequencing

PART 1

Single Cell Genomics suggests *Verrucomicrobia* as key polysaccharide degraders in planktonic ecosystems

- 1) Hydrolysis of polymers (polysaccharides, peptides and lipids) is a bottleneck in DOM mineralization in the microbial loop
- 2) Studies have focused in the identification of bacteria involved in labile-DOM remineralization (i.e. glucose and aa)
- 3) Two papers on the identification of bacteria involved HMW-DOM remineralization (chitin and EPS) by Microautoradiography+FISH ------ Bacteroidetes

Cottrell and Kirchman, 2003

Relevance of polysaccharides in marine systems

15% of POC

32% of HMW-DOM

50% of total phytoplankton primary production

5-15 billion metric tons of the **LAMINARIN**, **XYLAN** is a major polysaccharide the of most one common storage polysaccharides, are produced annually by algae and phytoplankton

Major polysaccharide in marine and freshwater systems

hemicellulose produced by plants and algae (2nd most abundant glucan) Major polysaccharide in freshwater, soils, estuaries,

and coastal areas

It has been demonstrated the bacterial hydrolysis

Identify marine and freshwater bacterioplankton involved in the degradation of these two major polysaccharides in aquatic environments

Maine goal of the project

Samples incubated with fluorescently labeled laminarin and xylan

Optimization of the experiment

Light side scatter, relative units

Samples incubated with fluorescently labeled laminarin and xylan

n=5 SAGs

Cyanobacteria

2000-5400 bacteria mL⁻¹ involved in laminarin and xylan degradation

Phylogenetic tree of positive-labelled Verrucomicrobia SAGs

Figure 3 0.05

Phylogenetic tree of positive-labelled SAGs belonging to other groups

geographic-blast

marine ecological Genomics

100 A C 8 hits 2 hits 2 hits 2 hits 83 hit 1 hit 3 hits 🚯 4 hits 1 hit 14 hits 26 hits hi 5 hits 1 hit 1 hit 2000 Rh 2000

Sequencing an uncultured widespread coastal cluster

result

Sequencing SAGs by PacBio and Illumina...

٠

Supplementary Table 2. Assembly statistic

	AAA164-A21	AAA168-E21	AAA164-L15	AAA164-O14	AAA168-F10
Assembly size (bp) Estimated genome	1,011,436	2,060,559	2,641,408	3,346,464	4,850,044
Number of contigs	754	1084	710	1141	1397
Largest contig (bp)	34216	31946	116022	57159	92178
Illumina sequencing effort (bp)	40	49	49	49	42
Pac-Bio sequencing effort (Mbp)	328	476	429	170	430
Total predicted genes	920	1741	2237	2870	4157
No. of genes in KEGG/COG/Pfam					

Estimated recovery: 88% for SAG AAA168-F10

Whole genome sequencing of the most predominant SAG phylotype

Genomic comparison among sequenced SAGs

Role of Verrucomicrobia SAG in polysaccharide degradation

Going deeper in the potential polysaccharide degradation role...

Α

Consensus Identity

gbAAC69707, Rhodothermus marinus gbABX81333, Acholeplasma laidlawii PG-8A gbABD74938, Sinorhizobium fredii gbACM22847, Thermotoga neapolitana DSM4359 * gbACI18772, Dictyoglomus thermophilum H-6-12 gbADN02324, Spirochaeta thermophila DSM6192 gbADF53999, Zunongwangia profunda SM-A87 gbEAR00031, Maribacter sp. HTCC2170 Verrucomicrobia SAG AAA168_F10 Verrucomicrobia SAG AAA164_L15 Verrucomicrobia SAG AAA168_E21 Verrucomicrobia SAG AAA164_O14

-predicted signal peptide-

Experimental proof of laminarinase activity

This verrucomicrobia is potentially involved in other biopolymer degradation

■ S01B	■ S41A
□ S08A	□ S09X
■ M23B	■ S33
■ S12	□ <mark>S54</mark>
■ M24B	■ M20A
□ M38	others

Conclusions:

- 1) Widespread planktonic *Verrucomicrobia* clusters with no prior knowledge on their ecological role contain putative laminarin and xylan degrading specialists that locally dominate this ecological niche –along with other bacterial groups- in marine and freshwater systems.
- Single cell sequencing and comparative genomics suggest Verrucomicrobia as a major polysaccharide degrader in fresh and marine bacterioplankton

OPEN access Freely available online

🎯 PLoS one

Capturing Single Cell Genomes of Active Polysaccharide Degraders: An Unexpected Contribution of *Verrucomicrobia*

Manuel Martinez-Garcia¹⁺, David M. Brazel^{1,2}, Brandon K. Swan¹, Carol Arnosti³, Patrick S. G. Chain^{4,5}, Krista G. Reitenga^{4,5}, Gary Xie^{6,5}, Nicole J. Poutton¹, Monica Lluesma Gomez¹, Dashiell E. D. Masland¹, Brian Thompson¹, Wendy K. Bellows¹, Kai Ziervogel³, Chien-Chi Lo^{4,5}, Sanaa Ahmed^{4,5}, Cheryl D. Glesner^{6,5}, Chris J. Dette^{1,4}, Ramunas Stepanauska^{3 +}

¹ Bigdiow Laboratory for Ocean Sciences, West Borthaby Hakoto, Malli Mindi States of America, 2 Collby Collby, Othero, Maternille, Main, United States of America, 3 Home Science, Marcone Science, Indexeo Revolution, Index States of America, 3 Home Science, Indexeo Revolution, Index States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial and Metagenome Program, Joint Genome Institute, Walnut Creek, California, United States of America, 1 Microbial America

PART 2

Unveil the ecological interaction between protists and bacteria in natural assemblages: predation and symbiosis

"Very cool" image showing the interaction between MAST-4 and bacteria

However, identification of both the protistan grazer and the bacterial prey has been shown only in the lab and never in natural assemblages

 \bigstar Main goal of the project

Modified from Jurgens and Matz, 2002

Targeting free-living bacterioplankton

Protists (18S rRNA gene)

Bacteria (16S rRNA gene)

Linking both the identity of the prey and the predator

SAR 11 (*Pelagibacter ubique*) is highly connected with MAST groups in coastal areas Negative correlation indicates likely predation

Protists (18S rRNA gene)

Bacteria (16S rRNA gene)

New way to identify putative symbionts and hosts

PART 2

Unveiled the ecological interaction between protists and bacteria in natural assemblages: predation and symbiosis

Conclusions:

- 1) The most abundant marine protist group (MAST-4) putatively grazing on the ubiquitous *Pelagibacter* ubique!!
- 2) Revealed the identity of protists grazing on widespread marine Bacteroidetes and Actinobacteria
- 3) Gammaproteobacteria as preferred prey in mixotrophic protists
- 4) Discovered new putative symbionts in Cercozoa and Crysophyta groups

The ISME Journal (2011), 1–5 ic 2011 International Society for Microbial Ecology All rights reserved 1751-7362/11 www.natiure.com/ismei

opg

SHORT COMMUNICATION

Unveiling *in situ* interactions between marine protists and bacteria through single cell sequencing

Manuel Martinez-Garcia¹, David Brazel^{1,2}, Nicole J Poulton¹, Brandon K Swan¹, Monica Lluesma Gomez¹, Dashiell Masland¹, Michael E Sieracki¹ and Ramunas Stepanauskas¹ 'Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME, USA and 'Colby College, Waterville, ME, USA

Part 3

Assign virus to host in natural uncultured assemblages: one at a time

<u>Manuel Martínez-García*, Fernando Santos*</u>, Mercedes Moreno-Paz, Víctor Parro, and Josefa Antón *<u>equally contribution</u>

Easy when you can culture the pair....

Combining Single Cell genomics and Microarray technology: a new approach to Assign virus to host in uncultured natural assemblages

13

Sequencing both the host and the virus

illumına [.]		No. of total reads	Quality score (% of total read Q30 Q20	ls) Mean read length (bp)
	Host AB578-D14	8,330,570	92.6 89.8	179
	Virus (fosmid insert)	11,911,500	92.5 89.5	190

Table S1. Illumina MiSeq sequencing results for the SAG AB578-D14 and the corresponding viral fosmid C23

Table S3. Assembly comparison of performance of SPAdes, CAMERA metaassembler+Geneious R6.1 and VELVET assemblers (36-38) for the nanohaloarchaeon host D14

Assembler	No. total contigs	No. contigs >1000 bp	Total nucleotide assembled	Max. length contig (bp)	NG50* value	N50±
SPAdes	962	112	1028544	54146	2741	9219
CAMERA Meta-assembler + <u>Geneious</u> R6.1 assembler	263	106	477107	39523	<200	1722
VELVET	332	62	209361	17300	<200	2766

*Since assembly sizes from the three strategies was very uneven (0.2-1 Mbp), the NG50 statistics was used to compare the three resulting assemblies. The NG50 statistic is the same as the N50 except that the genome size was used rather than the assembly size. Genome size used here for normalization was that from SPAdes.

±Only contigs of 500 bp and longer were taken in consideration for N50 estimation

Mapping reads from the single nanohaloarchaeon cell onto the cloned virus

Virus NHV-1: two quasispecies

Virus NHV-1 infecting SAG D14

B

M SNEDCETKDS I ETRTEPA LTECMTVLPDHGRA ED APG LFVVVGENCNGEV LVDTRTESCECKDA KYRDP**B**GGCKH**H** PR<mark>C</mark>R I AQGETPVP AG ETKDSIETRTERALTECMTVLPDHGRAEDAPGLFVVVGENCNGEYLVDTRTESCECKDAKYRDPDGGCKHERRYRIAQGETPVPAG Virus NHV-1 is a "common" virus (is not that weird...)

Recruitment of virus NHV-1 against a 454 metavirome from CR30

Genomic comparison: SAG AB578-D14 vs Nanosalinarum

Most HP from SAG AB578-D14 (nanohaloarchaeon host) present in metagenome

Metagenomic data from Ghai et al., 2011

Ramunas Stepanauskas and SCGC group

Bigelow Laboratory

Stefan Bertilsson

Vladimir Minim

Pepa and her group

Los Alamos National Lab

